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Abstract 

In his work, I developed a continuous time Markov chain model to examine the transmission pattern of HIV–

infection between the infectious (symptomatic) and AIDS disease states in a single patch. Using the method of 

probability generating function, we then derived expressions for the mean numbers of symptomatic and AIDS 

individuals in these states at any time t. 
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INTRODUCTION 

HIV and AIDS Pandemic are now entering its second 

decade. However projection of its future is uncertain, 

but it is clear from available resources and 

information that the world wide pandemic is still in its 

early stages. However, World health organization 

report for year 1991 shows that the cumulative 

number of HIV–infection will be 30 to 40 million by 

year 2000, and that there will be 1 million adult AIDS 

cases and death per year, with about ½ million in 

Africa and ¼ million in Asia (Hethcote  et al., 2002).  

These historical scenarios calls for concern and the 

need for a review of the current intervention methods 

so as to come up with appropriate policies  

 

that will help solve this problem. However it is also 

recognized by Word health organization that 

transmission of the HIV virus in Africa and some part 

of continents are mainly through heterosexual and 

mother to child modes. With adequate therapies now 

available to pregnant mothers, cases of Mother to 

child transmission can now be handled in most 

hospitals and health centers. Other intervention 

methods have to be developed to counter the 

continued increase in the cases of HIV infection 

through heterosexual contact. In this work we 

developed a continuous time Markov chain model to 

study the transmission of HIV–infection through 

heterosexual contact, and to examine the growth 

pattern of the disease in the two disease states 
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Where, 

Stage 1: Symptomatic Stage 

Stage 2:  HIV– Infectious Stage  

Stage 3: Natural (Non Aid Induced) Death stage 

 

Model Assumptions 
We assumed the following,  

(i)  The recruitment, immigration intensities and the intensities of transition from one state to the other, 

and that of deaths from each state are constant.  

(ii)  The immigration rates are assumed to be independent of the size of the state.  

(iii)  The transition intensities of an individual are independent of those of any other individual and are 

dependent on the size of the state.  

(iv) The intensities of death of an individual is depended on the size of the state and are independent of 

any other individual.  

(v) The immigration rate is independent of the size of the state. 

(vi) Transitions from AIDS to HIV infectious, susceptible or from HIV infectious state to susceptible states 

are irreversible, since there are no cures for HIV and AIDS, infectious individuals will eventually die 

of the infection through the opportunistic diseases.  

 

Model Formulation: 
We define the following in line with Chiang (1968); Bailey (1964); Rao (2006); Waema & Olowofeso (2005), 

 )(0* tti  = the probability that an increase in population will occur in state i during the time interval,

t) t,( t , through birth  and immigration 

)(0* ttij  = the probability that one individual will move from state  to state   during the time 

interval (t, t + t ), through internal immigration. 

)(0* tti  = the probability that a decrease in population will occur in state , during the time interval

),( ttt  , through death and emigration. 

)(01 ttii   is the probability that the size of state i  will remain unchanged during the time interval

),( ttt  . 

 

For notational convenience, we define in line with Chiang (1968); Waema & Olowofeso (2005); Bailey (1964),  
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We consider an immigration process in which an increase in population during the time interval (t, t + t ), is 

independed of the existing population size. For the state 1,2    iSi , we have 

(1)  2 1,   *   ,*  v,)(*  invnt iiiijiijii                                                   

(2)   2  ,1,   0 )(*
3

1

 



jivv i

ij
j

ijii  .                                 

Where )(tni  is the population size of state i  at time t. and  

 )(ti  is the immigration rate  into state i  

)(tvij  is the internal immigration  rate  from state ji   state     to  

)(ti  is the emigration  rate from state  i  

 

Now, suppose, the initial population size of each of these states at time 0 are by,  

021,0   , kk , respectively and the size of states, 
21 S  ,S are 

21 k ,k  at time t, 

Let probability function of the population size of the states at time t be, 

(3)            ))0(X  ,)0(/)(  ,)((Pr)( 022011221121
kkXktXktXobtP kk   

              Where )(0,1,2,...,  k   , 020121 kkk   

NSUK Journal of Science & Technology, Vol. 2, No. 1&2, pp 189-195 2012 

 

Continuous–Time Markov Chain Model for Transmission Dynamics of Hiv–Infection and Aids Epidemics 
 

 



3 
 

 

Using transition intensities, death, immigration and emigration rates into and out of these states. The probability 

of the size of states 
21 S  ,S  at time )( tt   is, 
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The Chapman– Kolmogorov differential equation is,    
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We solve this differential equation using the method of probability generating function. 

 

Let the joint probability generating function of the sizes of the disease states be,  
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Using equation (5), with the Chapman–Kolmogorov equation we get the associated partial differential equation, 
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S
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The auxiliary equations are, 

(7)                   
GSS

dG

Sv

dS

SvSv

dSdt

)(1 22112222
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Using, jjj dSSvvv  j22212111 dZ       ,1       Z,    ,   

 

The auxiliary equation reduces to, 

 (8)                    
GZZ

dG

Zv

dZ

ZvZv

dZdt

)(1 2211222
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From equation (8) we have, 
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 (11)                         ))(exp();,( 221121 ZZCtZZG    
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In matrix representation, equations (9) and (10) can be writhen as, 

(12)                                      AZZ 
.

 

 

Where, A is the matrix coefficients of the system, and Z is a column vector defined respectively by, 
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Equations (9) and (10) has the general solution of the form, 

(13)                                 )exp( tZ   

 

Where  the constant of integration and   are the roots of the equation, 

(14)                                      0)(  AI  

 

 Also, I is the identity matrix of the same order as, A. 

 

Using equation (14) we get the matrix and the corresponding characteristics equation, 
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We find the corresponding eigenvectors as, 
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22 v , into equation   0)(  ZAI , gives    

tZ )0   ,1(  and 
t

1122

11 1)       ,(,
vv

v
Z


  respectively. 

 

(15)                              tvtv
e

vv

veZ 2211

1122

1121

1       

0

1




























   

 

                            

tv

tvtv

e
vv

v
Z

eeZ

22

2211

1122

211
2

211

                                   )17(

                                  )16(













 

 

Solving for
1 , and 

2  respectively gives, 
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From equation (11) we have, 

(19)          ))(exp(),();,( 22112121 ZZtZZG     

 

Where ),( 21   is an auxiliary function to be determined using the initial population size of the disease 

states. 
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0201
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Using jj SZ  1 ,   ,2  ,1j  gives the joint probability generating function of the size of each of the 

disease states. 
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Where  jk0  is initial size of state j at time zero 

 

  (22)                            
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and   0201    ,   are the values of  2.  1,j  , j at time zero. 

 

Putting these values into the into equations for , gives the following expressions, 
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We solve these equations for jZ  as, 
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The required expression for the auxiliary function   is, 
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Where jZ  are obtained in equation (24) 

  

The joint probability generating function using equation (25) reduces to, 

(26)                      ))((exp()1();,( 2211
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For any 0t , the expression for  jZ  can be represented as, 
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The auxiliary function , is then represented using equation (27) as, 
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Substituting the values of j  into equation (27) and simplifying gives the values of 2. 1,j    , j  
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We representations the transition probabilities as follows, 

NSUK Journal of Science & Technology, Vol. 2, No. 1&2, pp 189-195 2012 

 



6 
 

  (30)               tvtvtvtv
eee

vv

v
e 22112211

22

1122

11
1211         ),(        , 


   

Where ij the probability of are transitions from state i to state j at time t. 

 

The values of j can then be writhen as, 
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The joint probability generating function of the population size of the states are, 
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Using jj SZ  1 , we obtained the following expressions for the joint probability generating function as, 
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Where,  
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The mean and variance of the size of the disease states at any time t are then,  
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DISCUSSION 

The expected population size of the two disease states 

and their spread can be estimated at any time t, using 

equations (34) – (37).  These expressions will help us 

to determine the growth rate of the two states, and will 

also guide policy makers on health on the appropriate 

intervention methods to be adopted, so as to reduce the 

level of transmission of the disease in the population.  
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