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Abstract 

Soil Organic Carbon (SOC) is one of the most important parameters affecting the chemical, physical and hydraulic 

characteristics of natural soils. Knowledge of spatial variability in soil fertility is important for site specific nutrient 

management. The study was conducted on a 467 hectare commercial cassava farm located at Lanlate (7º 36'N and 3º 

27'E), Oyo State, southwestern Nigeria. Soil samples were collected from eighty–eight (88) sites on a grid system at 

0-30 cm and 30-60 cm depths. Coordinates (latitude and longitude) of the locations of the sampling sites were obtained 

with the aid of a hand held Global Positioning System (GPS) (Garmin eTrex Ventura®) receiver,. The Walkley and 

Black (1934) wet digestion method was used to determine soil organic carbon content. Spatial analysis of the classified 

SOC was done in a GIS environment. A GIS software package ArcGIS 10.2 and ArcGIS Geo-statistical Analyst 

Extension were used. Various interpolation techniques, ordinary kriging, Simple Normal Score, Universal kriging, 

Empirical Bayesian Kriging and Ordinary co-kriging were used to produce the spatial distribution of the SOC. 

Ordinary co-Kriging with Nitrogen as a covariate gave the best model predictions for both surface and sub-surface 

depth. The best fit semivariogram models for SOC were “K-Bessel” and “J-Bessel” for surface and subsurface depths 

respectively. The nugget-to-sill ratio(Co/Co + C)  for soil organic carbon at the surface depth was 0.103 and 0.062 

for sub surface soil, these indicated a strong spatial dependence for both top soil and subsoil. The spatial distribution 

of soil organic carbon at Ekha farm is dominated by the constitutive factors and the random factors together. Based 

on the spatial interpolation, two management zones were delineated for SOC at the surface and subsurface depths. 

Keywords: Precision Farming, Soil Organic Carbon, Semi -variogram, Spatial pattern, Kriging 

and Modeling. 

INTRODUCTION 

Soil organic carbon (SOC) is a complex and 

varied mixture of materials and makes up a 

small but vital part of all soils (CSIRO, 

2011). Soil carbon improves the physical 

properties of soil. It increases the cation 

exchange capacity (CEC) and water-holding 

capacity of sandy soil and it contributes to the 

structural stability of clay soils by helping to 

bind particles into aggregates. (Leeper and 

Uren, 1993).  Soil organic matter, of which 

carbon is a major part, holds a great 

proportion of nutrients, cations and trace 

elements that are of importance to plant 

growth. It prevents nutrient leaching and is 

integral to the organic acids that make 

minerals available to plants. It also buffers 

soil from strong changes in pH (Leu, 2007). 

It is widely accepted that the carbon content 

of soil is a major factor in its overall health. 

SOC is the largest carbon (C) reservoir in 

many terrestrial ecosystems including 

grasslands, savannas, boreal forests, tundra, 

some temperate forests, and cultivated 

systems, comprising as much as 98% of 

ecosystem C stocks in some systems 

(Schlesinger, 1977). Globally, the amount of 

C stored in soil is equal to the amount stored 

in vegetation and in the atmosphere 

combined (Schimel, 1995). Natural variati-

ons in SOC occur as a result of climate, 

organisms, parent material, time and relief 

(Young and Young, 2001). The greatest 
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contemporary influence has been that of 

humans (CSIRO, 2011). 

The traditional approach to soil fertility 

management has been to treat fields as 

homogenous areas and to calculate fertilizer 

requirements on a whole field basis. 

However, it has been reported for at least 70 

years that fields are not homogeneous and 

sampling techniques to describe field 

variability have been recommended (Flower 

et al., 2005, Santra et al., 2008). Describing 

the spatial variability across a field has been 

difficult until new technologies such as 

Global Positioning Systems (GPS) and 

Geographic Information Systems (GIS) were 

introduced. GIS is a powerful set of tools for 

collecting, storing, retrieving, transforming 

and displaying spatial data (Burrough, and 

McDonnell, 1998). GIS can be used in 

producing soil fertility map of an area that 

helps to understand the status of soil fertility 

spatially and temporally, which will help in 

formulating site-specific balanced fertilizer 

recommendation. These technologies allow 

fields to be mapped accurately and also allow 

complex spatial relationships between soil 

fertility factors to be computed (Patil et al., 

2011). 

Geostatistics (e.g., Goovaerts, 1997; Webster 

and Oliver, 2001; Nielsen and Wendroth, 

2003) has been extensively used for 

quantifying the spatial pattern of 

environmental variables. Kriging has been 

used for many decades as synonym for 

geostatistical interpolation and has been 

proved as sufficiently robust for estimating 

values at unsampled locations based on the 

sampled data. In recent years soil scientists 

focused on using geostatistics and different 

kriging methods to predict soil properties at 

unsampled locations and to better understand 

their spatial variability pattern over small 

large spatial scale. (Yost et al., 1982; 

Trangmar et al., 1987; Miller et al., 1988; 

Voltz and Webster, 1990; Chien et al., 1997; 

Lark, 2002). 

The purpose of this present study was, thus, 

to investigate the spatial variability of the soil 

organic carbon at two different soil layers in 

a cassava field.  

MATERIALS AND METHODS 

Description of the study area 

The study was conducted on a 467 hectare 

commercial cassava farm located at Lanlate 

(7º 36'N and 3º 27'E), Oyo State, 

southwestern Nigeria (Fig 1). The climate of 

Lanlate area is hot subhumid and lies within 

the derived savanna zone, with annual 

rainfall of between 1200 and 1500 mm. The 

relative humidity is over 70% in the morning 

and falls to between 50 and 70% in the 

afternoon. The mean annual temperature is 

27°C and the annual temperature range is 

8°C. Some of the dominant vegetal species 

include Panicum maximum, Imperata 

cylindrical, Andropogon gayanus, 

Chromolaena odorata, Eupatorium 

odoratum, Tithonia diversifofolia, Parkia 

biglobosa, Vitellaria paradoxa, and 

Piliostigma reticulatal. The soils in the study 

area are Ferric Luvisols (Sonelveld, 2005). 

The study area was planted to cassava at 

different stages of growth (Figure 2). Soil 

samples were collected from eighty–eight 

(88) sites on a grid system using Global 

Positioning System (GPS), at 0-30 cm and 

30-60 cm depths. The samples were air dried, 

crushed and passed through 2 mm sieve prior 

to analysis. The Walkley and Black (1934) 

wet digestion method was used to determine 

soil organic carbon content. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Map of the study area showing soil sampling locations (n=88) 

Figure 2:  View of the study area planted to cassava at different stages of growth. 



Statistical analysis 

Exploratory data analysis was performed by 

SPSS (version 16) software. The data 

distributions were analyzed by classical 

statistics (mean maximum, minimum, 

standard deviation, skewness, kurtosis and 

coefficient of variation). Histograms and 

Box-plots for organic carbon data were 

inspected for the possible outliers which 

affect the descriptive statistics and the 

characterization of spatial variation. 

Geostatistical methods require using data 

with normal distribution values, SOC data 

was also checked for normality and 

transformed as appropriate. Spatial analysis 

of the classified soil organic carbon was 

performed in a GIS environment. 

Experimental semi-variograms were 

calculated for the two depths using equation 

(1) 
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Where: 

 γ(h) is the semivariance for the lag distance 

h.  

N (h) is the number of sample pairs separated 

by the lag distance h, 

 z(xα) is the measured value at αth sample 

location and z(xα+h) is the measured value at 

point α+hth sample location.  

Theoretical models (Spherical, Rational 

Quadratic, Hole effect, Exponential, K-

Bessel or Gaussian) were fitted to 

experimental semivariograms. A GIS 

software package ArcGIS 10.1 and ArcGIS 

Geo-statistical Analyst Extension were used. 

Model selection for semivariograms was 

done on the basis of goodness of model fit 

criterion. Various interpolation techniques, 

ordinary Kriging, Simple Normal Score, 

Universal Kriging, Empirical Bayesian 

Kriging and Ordinary co-Kriging were used 

to produce the spatial distribution of the 

SOC. The possible effect of covariates on the 

prediction of SOC was explored. Hence 

Cokriging was performed with Nitrogen, 

Calcium, Phosphorus, CEC, Magnesium, 

Potassium, Iron, Sodium, elevation, 

Enhanced Vegetation Index (EVI) and 

Normalized Difference Vegetation Index 

(NDVI) as covariates with SOC. Long term 

average EVI and NDVI were obtained from 

AfSIS (2014). 

 

Table 1 Organic Carbon Rating and Interpretations 

Range (%) Class 

< 0.4 Very low 

0.4 – 1.0 Low 

1.0 – 1.5 Moderate 

1.5 – 2.0 High 

>2.0 Very high 



 

RESULTS AND DISCUSSION 

Statistical parameters of soil organic 

carbon 

The summary statistical parameters of the 

soil organic carbon data set were listed in 

Table 2. To evaluate the data set, the mean, 

minimum values, maximum values, median 

values, standard deviation and variance were 

calculated. The organic carbon at the surface 

(0-30cm) depth ranged from 0.53 to 2.15 

(mean = 1.0405), while that of the sub surface 

(30-60cm) soil ranged from 0.33 to 2.13. 

Kriging methods work best if the data is 

approximately normally distributed. In 

ArcGIS Geostatistical Analyst, the histogram 

and normal QQPlots were used to see what 

transformations, if any, are needed to make 

the data more normally distributed. Normal 

QQPlots provides an indication of univariate 

normality. Histogram and normal QQPlots 

analysis were applied for each soil organic 

carbon  arameter and the results are presented 

in Figure 3. It was found that all the 

parameters required transformation for it to 

conform to the normality requirement of 

Kriging. For these parameters a log 

transformations were applied to make the 

distribution close to normal  

 

Table 2. Summary Statistical parameters of soil organic carbon at surface (0-30) and sub 

surface (30-60) depths 

 Soil Organic Carbon 

 30cm 60cm 

N  88 87 

Mean 1.0405 0.7157 

Std. Deviation 0.33469 0.30830 

Variance 0.112 0.095 

Skewness 1.268 1.834 

Std. Error of 

Skewness 

0.257 0.258 

Kurtosis 1.903 4.935 

Std. Error of 

Kurtosis 

0.508 0.511 

Range 1.63 1.80 

Minimum 0.53 0.33 

Maximum 2.16 2.13 

 

Semivariogram models 

The prediction of the spatial process at 

nonsampling sites using geostatistics requires 

a theoretical semivariogram. It is necessary to 

decide on a theoretical variogram based on 

the experimental variogram. It is vital to 

choose an appropriate model to estimate 

spatial statistics as each model yields 

different values for nugget variance and 

range which are essential for geostatistical 

analyses (Trangmar, 1985). In this study, the 

semivariogram models (Circular, Spherical, 

Tetraspherical, Pentaspherical, Exponential, 



Gaussian, Rational Quadratic, Hole effect, K-

Bessel, J-Bessel, Stable) were tested with 

optimized parameters. Prediction 

performances were assessed by cross 

validation. Cross Validation allows 

determination of which model provides the 

best predictions. For a model that provides 

accurate predictions, the standardized mean 

error (ME) should be close to 0, the root-

mean-square error (RMS) and average 

standard error (AVS) should be as small as 

possible, and the root-mean square 

standardized error (RMSS) should be close to 

1. When the average estimated prediction 

standard errors are close to the root-mean-

square prediction errors from cross-

validation, then you can be confident that the 

prediction standard errors are appropriate 

(ESRI, 2001). After applying different 

models for each soil parameter examined in 

this study, the error was calculated using 

cross validation and models giving best 

results were determined. Table 3 shows the 

most suitable models and their 

semivariogram associated parameter values, 

which are called the nugget, range, and 

partial sill for each soil organic carbon data 

set. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Spatial Structure of Soil Organic Carbon 

The parameter values of different model 

fittings of semivariogram of soil organic 

carbon are summarized in Table 3. The 

semivariogram obtained from the 

experimental data often had a positive value 

of the intersection with the variogram axis 

expressed by the named nugget effect C0. The 

existence of a positive nugget effect in the 

soil organic carbon data can be explained by 

sampling errors, shortage variability, and 

unexplained and inherent variability. C0 can 

also indicate the irresolvable variance that 

characterizes the micro homogeneity at the 

sampling location. Some semivariograms are 

generally well structured with small nugget 

effect. It showed that the sampling is 

adequate to reveal the spatial structures 

(McGrath, 2004). It can be seen from Table 3 

that the K-Bessel and J-Bessel nugget values 

were 0.0928 and 0.0114 for top and sub soil 

respectively. According to the nugget effect, 

the semivariogram increased until the 

variance of the data called Sill C was reached. 

Under this semivariogram value, the 

regionalized variables at the sampling 

locations are spatially correlated. The sill 

value represents total experimental errors 

(Ersoy, 2004). If the distance of two pairs 

increases, the variogram of those two pairs 

will also increase. Eventually, the increase of 

the distance cannot cause an increase in the 

variogram. The distance which causes the 

variogram to reach the plateau is called the 

range. In other words, the range is considered 

as the distance beyond which observations 

are not spatially dependent (Gallardo, 2003). 

The range of influences were 575.11 m for 

soil organic carbon at top soil (0-30) and 

141.21m at the sub surface depth (30-60cm) 

in the study area.  

 

 

Normal Q-Q Plot of Soil Organic Carbon at 30cm 

Depth 

 

Normal Q-Q Plot of Soil Organic Carbon at 60cm 

Depth 

 

Figure 3:  Histogram of Soil organic carbon at (a) 0-30cm & (b) 30 - 60cm showing a normal probability 

distribution and Normal Q-Q Plot of Soil Organic Carbon at (c) 0-30cm & (d) 30-60cm depths 



Table 3 Parameter values of different model fittings of semivariogram of soil organic carbon by 

ordinary co-kriging. 

 

The nugget-to-sill ratio (C0/(C0+C)) defines 

the spatial property. The variable is 

considered as a strong spatial dependence 

when the value of C0/( C0+ C) is less than 

0.25, a moderate spatial dependence when 

this value is between 0.25 and 0.75, and a 

weak spatial dependence when the value is 

more than 0.75 (Cambardella et al., 1993).  

The nugget-to-sill ratio for soil organic 

carbon at the surface depth was 0.103 and 

0.062 for sub surface soil, these shows a 

strong spatial dependence for both top soil 

and subsoil. These reveal that the spatial 

distribution of soil organic carbon at Ekha 

farm is dominated by the constitutive factors 

and the random factors together. The 

background content, type of soil forming 

mineral and soil type are the main aspects of 

the constitutive factors and human activities 

such as tillage-cropping systems, 

management measures, wastewater 

irrigation, vegetation cover, manure, crop 

residue management and artificial pollution 

are the random factors. Because of the 

disruptions and influences by human 

activities, the spatial relationship of soil 

organic carbon in the study area was 

weakened. Table 4 presents cross validation 

prediction errors for both topsoil and subsoil. 

From this table the best model prediction is 

assessed by the smallness of Root Mean 

Square error (RMS), its closeness to Average 

Standard error (AVS) and nearness of RMSS 

to 1. At the topsoil based on these paramaters 

Empirical Bayesian Kriging (EBK) 

performed with an RMS 0.322 and RMSS of 

1.017 among kriging methods without 

covariates. However, all the Cokriging 

methods with different covariates 

outperformed EBK except for those with EVI 

and NDVI as covariates. This result suggests 

that other soil variables such as Nitrogen, 

Calcium, Magnessium and Cation Exchange 

Capacity (CEC) when used as covariates with 

SOC improved the prediction errors 

parameters. The best Cokriging prediction of 

SOC was with Nitrogen as covariate 

followed by Calcium and CEC. A similar 

pattern can be seen with the results of the 

prediction errors at the subsoil (30-60cm) 

where the kriging methods with covariates 

performing better than those without 

covariates. Among those without covariates, 

however, EBK was outperformed by simple 

Normal Score Kriging method with a RMS of 

0.291 against 0.305 by EBK. This is in 

contrast with the results obtained for the top 

soil. Nitrogen still gave the best prediction 

errors when used as covariates to predict 

SOC and this was still followed by Calcium, 

CEC and magnesium respectively. Other soil 

parameters such as Iron, Potassium do not 

improve SOC prediction errors. 

Properties  Depth  
(cm)  

Model  No 
of 
Lag  

Lag 
size  
(m)  

Nugget 
(Co)  

Partial 
sill ( C )  

Range  
(h)/ m  

Sill (Co + 
C )  

Ratio  
Co/ (Co + 
C )  

Soil 
Organic 
Carbon   

0-30  K-Bessel 12  71.88 0.0928
07 

0.8100
7 

575.11 0.9028
7 

0.103  

Soil 
Organic 
Carbon   

 30 - 
60 

J-Bessel 12 192 0.0114 0.1657
6 

141.21
4 

0.1768
7 

0.062 



Kriging Analysis and Spatial interpolation 

of soil organic carbon 

In order to identify the spatial distribution 

patterns of soil organic carbon in the study 

area, it is necessary to present the data in the 

form of a map. For this purpose, SOC 

distribution map was obtained by the 

ordinary kriging based on the rational 

quadratic and K-Bessel models. Kring is 

based on the regionalized variable theory and 

is regarded as a powerful interpolation 

technique because it provides for the optimal 

interpolation estimate and has been used 

successfully to investigate the spatial 

variability of continuously varying 

environmental parameters and incorporate 

this information into mapping (Burrough, 

1997; Stein and Bouma 1993). Spatial 

distribution maps of soil organic carbon for 

surface (0 – 30cm) and subsurface (30 – 

60cm) of Ekha Agro farms, Lanlate are 

presented in Figure 4 and Figure 5 

respectively.  

 
 

 
Figure 4: Spatial distribution map of soil organic carbon using ordinary Cokriging method for surface (0 – 30cm) of 

Ekha Agro farms, Lanlate, Nigeria. 



Table 4: Cross validation prediction error parameters for different Kriging methods (covariates are in bracket for Cokriging 

methods) 

  0-30 cm depth   

  

Empirical 

Bayesian 

Kriging 

(EBK) 

Ordinary 

Kriging 

Universal 

Kriging 

Simple 

Normal 

Score 

Kriging 

Ordinary 

Cokriging 

(Nitrogen) 

Simple 

Normal 

Cokriging 

(Nitrogen) 

Simple 

Normal 

Cokriging 

(Calcium) 

Simple 

Normal 

Cokriging 

(CEC) 

Simple Normal 

Cokriging 

(Magnessium) 

Ordinary 

Cokriging 

(NDVI) 

Simple 

Normal 

Cokriging  

(EVI) 

Mean error (ME) -0.0114 -0.0004 -0.0004 -0.0043 -0.0053 -0.0034 -0.0058 -0.0057 -0.0051 -0.0010 -0.0045 

Root Mean Square 

Error (RMS) 0.3221 0.3298 0.3298 0.3298 0.2383 0.2311 0.2640 0.2681 0.2877 0.3288 0.3287 

Mean Standard Error 

(AVS) 0.3120 0.3227 0.3196 0.3100 0.2351 0.2069 0.2532 0.2573 0.2708 0.3230 0.3098 

Root Mean Square 

Standardized (RMSS) 1.0170 1.0101 1.0321 1.0578 0.9989 1.0706 0.9795 0.9857 1.0220 1.0087 1.0479 

Model Type  

Hole 

Effect Hole Effect 

Hole 

Effect K-Bessel K-Bessel Stable Stable Stable Hole Effect Hole Effect 

            

    30-60cm depth     

Mean error (ME) 0.0006 0.0001 -0.0014 0.0115 -0.0062 -0.0070 -0.0013 0.0017 0.0049 0.0026 0.0039 

Root Mean Square 

Error (RMS) 0.3051 0.3201 0.3183 0.2912 0.2153 0.1999 0.2649 0.2744 0.2896 0.3026 0.3050 

Mean Standard Error 

(AVS) 0.3041 0.2998 0.3128 0.2804 0.2580 0.1908 0.2482 0.2587 0.2623 0.2943 0.3005 

Root Mean Square 

Standardized (RMSS) 0.9796 1.0660 1.0167 1.0067 0.9773 1.0912 1.0001 1.0080 1.0592 1.0021 1.0011 

Model Type  J-Bessel Hole Effect J-Bessel J-Bessel Stable K-Bessel K-Bessel 

Rational 

Quadratic Hole Effect Gaussian 



 

 
Figure 5: Spatial distribution map of soil organic carbon using ordinary Cokriging method for subsurface (30 – 

60cm) of Ekha Agro farms, Lanlate, Nigeria 

 
The spatial interpolation of surface (0-

30cm) and subsurface (30-60cm) soil 

organic carbon for Ekha Agro farms, 

Lanlate as shown in Figure 4 and 5 above, 

revealed that the SOC of the farm ranged 

between low and high at the surface depth 

and low to moderate at the subsurface soil 

(Table 1). The spatial pattern of SOC at the 

top soil and subsoil are similar and can 

successfully be divided into two 

management zones based on the SOC 

contents of the farm. Management zone I 

has SOC in the range of Moderate to high 

while Management zone II has low SOC. 

Farm management strategies that will 

promote buildup of SOC in management 

zone II and maintenance of SOC stock in 

zone I should be encouraged. This can be 

achieved through leaving crop and cover 

crop residues in place or by applying 

manure amendments. Crop residues include 

inputs from roots, which are crucial to 

enhancing the slow and stable organic 

matter pools 

Conclusion 

Geostatistical characterization of the spatial 

variability through semivariograms or 

correlograms generally brings new insight 

into the way soil attributes are influenced 

by the environment such as geographical 

distribution of soil types or topography. In 

this study, kriging based on geostatistical 

techniques was applied to analyzing and 

interpreting soil organic carbon at the 

surface (0-30cm) and subsurface (30-60cm) 

depths in a commercial cassava farm at 

Lanlate, southwestern, Nigeria. The 

analysis of the spatial structure showed that 

SOC at both depths were spatially 

correlated. SOC was generally higher at the 

topsoil than at subsoil. Covariates such as 

Nitrogen, Calcium, CEC and Magnesium 

improved predictions errors thereby 

making for more reliable predictions. The 

spatial distribution of soil organic carbon at 

Ekha farm is dominated by the constitutive 

factors and the random factors together. 

The background content, type of soil 

forming mineral and soil type are the main 

aspects of the constitutive factors and 

human activities such as tillage-cropping 

systems, management measures, 

wastewater irrigation, vegetation cover, 

manure, crop residue management and 

artificial pollution are the random factors. 

Because of the disruptions and influences 

by human activities, the spatial relationship 

of soil organic carbon in the study area was 

weakened. However based on the spatial 

interpolation of the SOC, two management 

zones (I and II) were delineated for the 

surface and sub-surface depths. Farm 

management strategies that will promote 

buildup of SOC in management zone II and 

maintenance of SOC stock in zone I should 

be encouraged. 
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