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Abstract

In this work, w e examined the stages of HIV progression to Al DS and proposed a stochastic model of the
number of 1'4 - cells counts in an HIV infected person. The mean number of T4 — cells in each disease

phase is obtained and the conditions for a stable level of CD i = lymphocyte cells in an infected host are
sugeested. The need for antiretroviral therapies to sustain this level is emphasized.
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INTRODUCTION

"The (D*cells lymphocytes cells, sometimes called
T4 - cells are often the primary targets of the HIV-
virus L. un infected host, and gradual decline from
their normal level of 900 m/l is associated with
sequence of progression stages towards AIDS in the
host and pravides us with information on when to
start zidovudine and other antiviral treatments
(Hethcote ¢t al, 2002). However decline in the level
of T4 Lymphocytes cells in an infected host follow a
sequence of phases, the pre-antibody phase, where
an individua! is infected but not antibody
seropusitive. Some individuals at this stage may
experience acute illness. The asymptomatic phase’
includes persons who are infected and antibody
seropositive. The symptomatic phase occurs when
individual develop an abnormal hematologic
indicator m lnndn'unal illness, such as persistent
and generalized lymphadenopathy or oral
candidiasis (Hr‘lhcolc el uf,?()ﬂz) and the last stagc
ic the clinical AIDS phace. However progression
from HIV to AIDS in children i¢ significantly
ditterent trom that of adult. Some children are
kl1erl1 to }'1![!&1 £SS mMmore rﬂpldly thﬁn Othcrs.
Children born with HIV infection are known to
survive only within the firat hive ycars of infection.
However, in this work we are only concerned with
adult progreseion stages to ATDS in line with the
hive phases of transmussion of the disease, and so
we provided estimales of the mean number of
Themurfls plusuul in an il_]f?(‘h’d person at various
stageo of the disease, Other approache: to HIV and
AIDYS modchng  can be scen mn the works of
Huthvutwer ol (2002), Waema and Olowofesa (2005),
Iwurnor G0 (1999), Bailey N.TJ. (1964, 1975)
Chiang (' (1968) and Rao B. V. (2006).

Model Assumptions

We assume the following five clinical stages from
HIV-infection to AIDSand deathdue AIDSas,
Stage one: pre-antibody stage

Stage Two: Asymptomatic stage

Stage three: Symptomatic stage

Stage Four: AIDS Stage

Stage Five: Death state from the disease

An individual withCD 'cells in the HIV infected
host stages is assumed to be due to non disease and
disease death, from HIV-virus.

Let the probability that a cell dies due to HIV
-infection, during the time interval, (¢, t + A 1) be
BnAt + 0(Af) the probability that a cell in phase j
replicate itself during the time interval (¢, ¢ + Af) be
nAjAt+ 0(At) the probability that a cell in phase j dies
due to nature during the time interval (t, f + Af) be
wnAt + 0(Af) and the probability that a cell

survived to the next stage during the time interval

(t,t+A) benvyAL+ 0 (AL), L j=1,....5

Where B is the disease induced death rate due to
AIDS in stage four, 3/ is the cell replication rate in

state j, Ly is the Cd4" death rate in state j and v; are
the transfer rate constant from state i to state j n is

the cell counts at timet and 0 (A) is an infinitesimal
quantity that goes to zero as A goes to zero
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Model Formulation
Pre-antibody state

Let the conditional probabilities associated with change in the number of T'4 — cells in an infected
host be,

Prob(X (¢t +At) = n+1/ X (t) = n) = n\, At + 0(Ar)
Prob(X(t +Af) = n+2/ X(t) = n) = 0(A?)

Prob(X(t +At) = n—1/ X(£) = n) = p,nAt +nv, At + 0(Ar)
Prob(X (¢t +Af) = n—2/ X (¢) = n) = 0(AY)

Prob(X(t + At) = n/ X(t) = n) =1=nA At = np, Af — nv, At + 0(At)
Where X#() is number of T4 - cells in an infected host at time t

let ob X, t =n X  =¢ betheconditional probability of the size of the
T4~cclls in the first phasc.

Then,

P(t+Af) =P ()(1— (A +p, +v,)nA) + B, ()(n—DMAD + B, ()1 + v, )(n + 1)AL)

P (t+A8)— P (£) = —(A, + W, + VA, () + (n = DAMALE, (D) + (n+1D)(p, +v,,)F, (1)

o A;: B L B (- DAL @) + (1 D + %) Pra (D)

Where P0) 16 the probability of the size of the T4- cells counts in an infected host at
tme t

Allowing At goto zero, leads to the Chapman differential equation,

dp_ {t ] )
() ‘%%l—-ﬂh*wn*wJHU)+0ﬂ4ﬂJLKO+(n+DQH+%J%HU)
'@ R _ gy 1RO

LGt the accociated probability generating function of the size of the T4 —cells be,

@ Gy = Xy =YX
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From the Chapman -Kolmogorov differential equation we have,

x

d o
Z;;P.(I)X =

=G+ E B OX" + 2 (0= DB (X" + (b + )5 (n + DB, (X"
n=|

n=] n=]

oG(X; 0G(X; o0G(X; 0G(X;
—‘at—fl-a’m»—m V)X ;X D 4 ax? a(X D 4+ (y + X ;X D_pa)

Substituting the value of P,’(f) into the above equation leads to the following,

0G(X; oG(X;t 0G(X, oG(X;t
-———;t D oy )X z(ax ) 1ax? ;X D 4 i, v ;X )

G X; 0G(X;
D—% = [(()1 + My +v|z> —““")X = (l'l‘l +vlz)] ;X t)

08067363965 '
The auxiliary equations are,
@ dt - dX - dG(X;t)

I (a4 +%) - X)X (i +vg) 0
dr _ dX _3G(X;1)
I (X =Dy +v -2 X) 0
(5) Let G(X;t)=C, and

—_—  exp(~(W + v, AN =C
ur&vﬂf}\q}{ p( (u: 12 )‘1)) 2

Wao let Cl = f (C:) and from the initial condition; we find the auxiliary function to be,

4 G = f(— o itv M)
) i e )
Whent=0, G(X:0) = X = S —2 L |X] <1
T H+B +v, -AX
Let9 = ’Y_ L ) X:l"'e(“;"'vu).
B+ v, —AX 1404,
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1+6a)

8)= , a=u +v,
m f( ) 1+6A1 un 12
Putting 8 = —2 1 ~t-ma-h
WtV —AX
From equation (6) we have,
n (- - XA —ae™ M)
(8) G(XQt) - ( o _ke_(n_k)l _u(l _e-(n_l),) )

oG(X.1)
aX

~(&=Xy )

)] EX(@)= Iy =cE

Var (X () = E(X (€)X (1)~ 1) = E(X(0) +[E(X@)) =

(10
¢ (e'(u—h)‘ + oo teM e—(lu-h)l(zeulxl —é" l(a' —ca +A +Ck‘l)))
a-A
o*G(X;t
ay XX -0 = 22500
Asymptomatic State,

Assume that change in the number of T4 — cells in this stage is due to cells replication, death due to
infection and natural and transition to the next stage. We then obtain the following associated
conditional probabilitics with this change in the size of

the T4 — gelly in this crage,

Prob(X,((¢ + ) = n+ 1/ X(8) = 1) = (A +V,,)nAL + (A7)

Prob(X,(r+Ar)y =n+ 2/ X(r) = n) = 0(Ar)

Prab{X (¢ +At) = n—1/ X (t) = n) = (i, + vy )nAt + 0(AL)
| Prob(X,(t+AN = n—-2/X(1) = n) = 0(Ar)

Prob{ X, (¢t 1+ Af) =n/ X(£) =n) =1-(Ay + Uy + ¥y + vy )l + 0(Ar)

Let Prod (5;(N=1X(0)=¢,) be the conditional probability of the size of the

T# cells in stage two.
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The probability that the number of 74 — cells in an infected host in the stage two is n,
attime (ff +A  is obtained by consideringall the three possibilities leading to the n
events as follows,

PL(X,(t + Af) = P(t)1 = (hg + iy + g + Vi )nAL +O(AL) + By (E)(h; + v Indt + O(AD)

P (O)((1 + vyt + O(A2) o

P(+At)-p, () = —(Ay +Hy+ vy + vy, )nALP, () + (A, + v, X(n —DALP, )

(1, + Vv )(n+DALP, ®

The Chapman-Kolmogorov differential equations are given by,

(11) ggﬂ.(’)=‘()‘1+uz+vlz+vzs)nﬂ.(1)
+{(Ay + v Y= 1E, () + (1, + v X(n+DE,, (1)

(12) %%(’)z(pz"'vzs)ﬁ(t)

We adopt the probability generating function in (3), then the associated Chapman-

Kolmogarov differential equationare obtained as, -

Z.*,*Pu’) Ny =

—(A, |yt Yy +v=,12_‘n}’ (t)+(}q+v,,)2(n 1)P_,(t)+(p2+v23)2(n+l) )

n=l

AO(X30 _ plepy =

e ()

(R, *p,ty, | V) Xy aG(Az;l_)'*'o"l"'vu)X zaG(th) +(p, + 23)(6G(X2’t) R (1)
ox, axX, X,
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Using equation (12), we get the associated partial differential equation,

cG(X,31) _
ot
0G(X,; 0G(X,;t 0G(X,;t
<Oty ) X, T 3 OO 4,y T2
. ox, ox, X,
BEE o 0 -0 X X =y =) T2 =0
ox,
The auxiliary equations are,
(13) _df i dXx, - dG(X,;1)
I (X -DAX +upX —py—vz) O
(14)
G(X;1) =C,
(15) ——i_l——sexp((M -M)) M, =, +v M, =4, +v
M. X -M, 2 ' " s 27 " 2 2 .
.S T c X-1
16 ey M =0, (X0)=X" = f(——), t=0.
(16) MzX*‘M,e 4 (X30) f(MZX—M,)
lct9=—”—(-?—L-,foran‘|X|<1, PO bt
M X - M, MpP -1
' Mo -1 X-1
1 By e, Pup ) o =%
(17) /(8) Mo 1 G M,X——M,e

The required expression for the probability generating function is also obtained as,

(Mg ™" = M )X = M, (™™ +1)

(1 8] G(X;') e ( Mz(ei(‘"] M\ l)X - Mze_(Ml_Ml)' L Ml

)*

(i9) E(X@) = i ) cexp(=(M, = M )1)

M +M,
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8’G(X;t) ’

E(X@)(X(@#)-1) = 2

1
E‘:;:{y(c2 cxp(—(M2 St Ml )) X -

X=1 =

((c; =M, exp(M t) - ((exp(Mt) ~ 2exp(M ) +c, exp(M )M ,))

(20) Var (X (1) = E(X(0)(X (1) -1)+ E(X (;)) ~[E(X @)Y =

(M, = M,)c, exp(—(M, — M)t)(1+ exp(—(M, - M )M, +(1 —exp(—(M, - M ))M,)
(M, +M,)

Symptomatic State

Change in the size of third stage 7'4 - cells counts is assumed to be due to transition to and from the
stage, coursed by natural, disease induced death and cell replication respectively.

The conditional probabilities associated with these dynamics are given as,

Prob(X(t+ Af) = n+1/X(t) = n) = (A, +v,, )nAt + 0(At)
Prob(X(t+At) = n+2/X(f) = n) = 6(At)

Prob(X(t+ At) = n =1/ X (1) = n) = (y +v3,)At + 0(AL)

Prob(X(t+ At) = n/ X(t) = n) = 1= (A, + [y + v,y +v,)nAL +0(AL) .

Prob(X(t+ At) = n -2/ X(f) = n) = 0(Ar)
Let Prod)/(0X,=n X =c¢, be the conditional probability of the size of the

Téd wcells in stage three.
The probakiiity that the number of 74 — cells in this stage at time (¢,f + At) isnis,

F (X (14 A1) = B (D= (A + 1y + vyy + 30082+ O(AL) + P_ (£)(A; + v, )nAt + 0(AL))
£ Ry + vy )t + 0(AL)

Pt + A= p,(t) = ~(Ay + iy +vyy + vy )nALE, (1) + (A + vy M(n = DALP,_, (1)

(Hy + Vo )n + DAL, (1)
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The Chapman-Kolmogorov differential equatiors are,

@1) L P =~ + 1+ v+ RINEO)
+ (7‘1 S Vza)(n -DP, —l(t) + (PJ + Vu)(” +1)P, +1(‘)

22) 2P0 = (b +%0RO

The associated partial differential equation s,

9G(X;31) 0G(X,30)
23 TRLDY (A + Py + vy 93X, — 2
@3) ot (A +py +vy +v) X, o,
20 *V) X, 0, (4s + V54 9G(Xy:0)
2 2
aG(Xz’t) (X IXMX"'V”X u3 )aG(Xz’t)_:o
ax,
The auxiliary equahons are,
24 ot _ dX, _ dG(Xy;0)
1 (X-DAX+vpX -y, — Vu) 0
(25) . G(X;t):C‘
X-1l —ay)t .
e =0, TR
2! G(X; e @) G(X;0 =Y a 0.
@) ( o GRS X—a.)
X-1 af -1
28 Letd = ———, forall | X] <1, Yool
- X -y 5 le a9 -1
af -1 X1
29 9)=—"——.  Put 0 = —(@g—ay )t
@) &)= L
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Modeling the dynamics of t4-cells Counts in an hiv-infected individual
The probability generating function s,

(o, e™ @™ —,) X —at, (€7 +1)

(30) G(X;t) =( az(e-(az_ql): )X _aze—(u,-ul), -y )‘1
31 EX() = 270 ¢ exp(~(a1, o)1)
a, +a,
) Var(X(0)) = EQCOX(0) =) + EQX () ~[EX )P =

(o0, =0 ey exp(—(a, —a))1)(1 + exp(—(a, —a, ), + (1-exp(—(a, -a)e,)
(o, +a,)’

AIDS State:
The conditional probabilities associated with change in the size of stage four

T4 —cells counts are given by,

Prob(X(t+ At) = n+1/X(t) = n) = (A, +v,,)nAt+ O(At)
Prob(X (¢ +Af) = n+2/ X(£) = n) = 0(A)
Prob(X (¢ +Af) = n—1/ X (£) = n) = (B + i, +v,s)A? + 0(AY)
Prob(X (¢ + Af) = n/ X(1) _ 1) =1=(A, + i + B+ +v)nAl + 0(A?)
Prob(X (1 + Ar) = n—2/ X(t) = n) = 0(Ar)
Let Prg¥(@)) 7 =»n X  =c, bethe conditional probability of the size of the T4

cells in stage four

Then.
DXt Aty = P =(A, +py B + vy, + vy )nAL +0(AL) + P ()((A + vy )nAL + 0(A))

B (O((1y + B +vy5)nAt + (A1)
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&
i The Chapman-Kolmogorov differential Equations are,

(33) %P,(t) = =(Ry + Py + B + V3 + Vi InE (0

+(Ag + vy )(n=DF, > () + (B + B Hvg)(n+ DA, ()

d
(34) ZR)(’)=(H4 +B +vis)R()
' The associated partial differential and auxiliary equations are, :

GXyit) _ (X~ X +v, X — i, —B = v“)———aG(XZ") 0
ot oxX,

(35)
o dt _ ax, _ dG(Xy0)
l (-X-l)(?u‘X+VMX "u‘ e B —v45) 0
(37) G(X;0) =c¢,
Xe=l -
(8) ST gt g o =Bt M= AtV

M X -~

Using similar augments an in equations (27) - (29) ,with the initial number of T4 — cells counts at
time 0, assumed tv bec, . The probability generating function of the average number of cells and their

variance are, ‘
(.n =(nz=m) -1, )X -1, (e-(m-'m)l +1)
(39) G(X;0) =( l( T )X —m,e "
(10) EX)= (n :;) 0 oxp(=(, ~n))
1

(d1) Var(X () = E(X(NX (@)~ D)+ E(X@) - [EX )] =

n, =1 )ea 8xp(=(, =0 N1+ exp(—tn; —n,)om, + (- exp(-(, —M)N,)
M, +m,)°
The limiting mcan numbers of eclls in ¢ach of the four phases are respectively,

- (12) c, if a>k
——(MI‘M‘)L- ifM, > M,

43
) M +M, »

(44)

(45)

(Olg —04) :
= g, ifa;>o

a, +Cll

M, M) ;
MC4! lf T‘: )nl
T+,
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) fa>k M, >M, o,>a, M>7.
The intensity of transition from stage i to state] also satisfy,

Vig 2 M =R V=V > A =l Vie =V > Ay =My, Ve — V3 > A -t

t=pu+p

(47 However, if a <A, M, <M, «a,<0q,, andn, <7,
The transition intensities from state i to state j satisfy the following

Vip A =My, Yoy =Vip <Ay =y, Vi =Vyy <Ay = ly, Vg =Vyy = A, —¢

Equation: (46) represents a gradual decay of the CD + lymphocytecells which is often the target of

health providers, while (47), represents a faster one not often desired and reflects the scenario infected
host often tzies to aveid.

CONCLUSION

Slowing down the transfer rate constants from each disease phase to another will help to slow the
rate of progression to AIDS from HIV infection  and prolong the productive life of an infected
individual. In this case conditions (46) will have to be realized to achieve this. However this involves
the nae of antiretroviral and other treatment therapies to help slow down the decay process of the
infeeted helper cells,
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