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ABSTRACT 

The formal idea of gravitoelectric component has a long history, the gravitoelectric component springs from the weak field and 

slow motion approximation of Einstein geometrical field equations of gravity and by a common analogy with Maxwells 

dynamical field equations of electromagnetism. The gravitoelectric component is known to account for the excess perihelion 

precession of the orbit of mercury as a relativistic correction to the Newtonian idea. In this article,  we study the non-static 

gravitoelectric component using a weak relativistic field and slow-motion approximation in an Einstein-Maxwellian type 

equation to establish the coupling effect between non static gravitational field and electric field. The proposed study contains the 

non-static Einstein’s weak field gravitational scalar potential applied to d’Alembertian operator to obtain the Poissons equation. 

The study satisfies Guage transformation, the continuity of functions and shows unqiue method to obtain the scalar potential and 

vector potential of gravitoelectric component by seeking some series approximations and boundary condition to the 

gravitoelectric field. Our  obtain result in the limit of weak field establishes a coupling effect between Einstein geometrical field 

equations and Maxwells dynamical field equations, it also satisfies Poisson’ss equation and the verified equivalence principle of 

Physics. The result will widen the scope for further study and laboratory experimentation of gravitoelectric coupling. 
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INTRODUCTION 

The concept of gravitoelectromagnetism in the limit of weak 

field has recently attracted a lot of attention and has been a 

subject of intense research in Ref. (Flavia & Rubens 2017; 

Sarki et al., 2019; Bezerra et al., 2005; Nyambuya, 2014; 

Tajmar, 2001). 

Einstein in 1916 proposed the theory of General Relativity 

(GR), which describes how space is affected by mass-energy 

and momentum tensor distribution (Flavia & Rubens 2017; 

Sarki et al., 2019). Linearization in the weak field and slow-

motion approximation has unveiled in previous literature a set 

of four (4) non-linear differential equations comparable to 

Maxwell’s equation of electromagnetism (Flavia & Rubens 

2017; Nyambuya, 2014; Tajmar, 2001; Howusu,  2009, 2010a, 

2010b). The effects of GR can be better understood by using a 

direct formal analogy with electromagnetism, and the idea is 

that non-static moving mass currents generate a field (Bezerra 

et al., 2005). Einstein’s GR provided an excellent explanation 

of the excess motion of Mercury’s perihelion in terms of a 

relativistic gravitoelectric correction to the Newtonian 

gravitation. 

Subsequently in 1918, Lense & Thirring discovered the 

Gravitomagnetic effect of the Einstein’s field equation in a 

slow-motion and weak-field approximation, the consequence 

of this is that Einstein’s Geometrical Field Equation EGFE 

could be written in the same structure as  Maxwell’s 

Dynamical field equations of Electromagnetism MDTE with 

the existence of comparable operators for both field (Sarki et 

al., 2019). Thus, the formalism of gravitoelectromagnetic 

coupling arises from the interaction and splitting of 

electromagnetic into components.  

According Maxwell’s equations a time-varying (non-static) 

magnetic field B  acts as a source of electric field E . Thus 

either a time-varying magnetic field B  or electric field E  

induces a field of the order in adjacent regions which can 

propagate through space with speed equals to light . Maxwell’s 

equation for time varying field is proposed to be Eqn. (1-4) 

(Tajmar, 2001; Young & Freedman, 2008; Tiwari & Malav 
2010). 
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Where v is the charge density 

While  the Einstein gravtoelectromagnetic analog of Maxwells 

equation is proposed to be (5)- (6) 
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Where g
 
is the gravitoelectric field, gB is the gravitomagnetic 

and g  is the gravitational permittivity. 
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In this article we establish theoretically the coupling effect 

between EGFE and MDTE,  and using a weak field 

approximation to gravitectric potential 

THEORETICAL BACKGROUND 

Metric tensor are the fundamental basis for all geometrical 

theories and the metric tensors should hence satisfies 

Scwarszchild metric and should naturally reduce to a second 

order partial differential equation (Sarki et al., 2019; Howusu, 

2010a, 2010b). The metric tensor to a non-static varying 

distribution is given by Chifu (2009) as 
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It could be seen  that the Eqn. (9)-(13) satisifes the priori and 

according to Heaveside the gravitoelectromagnetic field are 

hidden in Einstein tensor equation and can be written as a 

linear perturbation of the Minkwoski spacetime. the 

geometrical wave equation in (9)-(13) in the limit of weak 

gravitational field and slow motion  reduces to the wellknown 
d’Alembertian operator given by Chifu (2009) as 
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For a non static gravitoelectric field Eqn (7), the gravitoelectric 

field will be express as the scalar potential of the 
gravitoelectric field  
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It is established that the divergence of a curl is zero, and by 

computation from Amperes law it could be shown in 

(Nyambuya, 2014, Howusu 2010a, 2010b). that 
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However towards the interior Eqn. (16) = 0 

Hence at this stage coupling effect is well established as given 

in  Eqn. (14) and (16). The solution to the gravitoelectric field 
potential is eminent. 

For a relativistic non-static field, Eqn. (14)  
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And in a recent article the scalar potential is (Sarki et al., 2019; 

Lumbi, et al., 2019). 
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Taking the derivative of Eqn (16) with respect to r gives 
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Substitute Eqn.  (18) and (19) into Eqn. (17) while taking the 

derivative to the weak field. in the limit of 
oc  

The equation reduces to the Poisons form, giving by  
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For this exterior field equation, we employ the weak field 

approximation to Eqn. (21) In order to obtain the vector 
potential by . 

The series solution for the exterior scalar potentialcan be 
written in the form 
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Substitute  the series terms in Eqn (22)-(24) to the weak field, 
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Adopting the guage transformation, gravitoelectrtic scalar 

potential satisfies the condition of continuity of a function, the 

contiuity functions thus is given by 
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We can write Eqn. (20) interms of 1g  and substitute in Eqn. 

(28),  which yields  
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We can similarly obtain the equation for the interior field with 

the series term 
2 2
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Which reduces the interior field to a pure Poisons-Maxwells 

equation. 

Thus, Equation (32) is the total gravitoelectric potential energy 

due to the exterior field.  

The gravitoelectric potential using Einstein geometrical field 

equations in the limit of weak relativistic field  is indeed a 

profound theoretical discovery, as of recent potentials have 

become powerful tools in quantum physics in the study of non-

linear systems. 

Our obtain potential could be apply in the Schroudinger 

equation to study energy spectrum, charge particles and wave 

function properties in the presence of gravitoelectric field. 

This potential has an analogy with Coulomb potential given by 

2

0

e
V(r) = 

4

Z

r
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potential used in describing diatomic molecular vibration given 
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CONCLUSION 

Thus, in this article we have seen the interaction between non-

static Einsteins relativistic geometrical field equation and 

Maxwell’s dynamical field equations, thus the coupling effect 

is well established and our study satisfies Poisons equations 

given by (20) thus equivalence principle of Physics is well 

established. 

The gravitoelctric coupling has establsihed a relationship 

between Einstein geometrical theory of relativity and Maxwells 

dynamical theory of electromagnetism, this is indeed an 

encouraging factor for further laboratory experimentation of 

gravitoelectric coupling. 
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